Prepared by

Prepared for

Katerina Belotskaia
Sunwoo Hwang

Zellic

Ahmet Ozcan

Odos

June 23,2025

Odos Cross-Chain Contracts

Smart Contract Security Assessment

1% :
\\4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025
Contents About Zellic 4

1. Overview 4
11 Executive Summary 5
1.2. Goals of the Assessment 5
1.3. Non-goals and Limitations 5
14. Results 5
2. Introduction 6
21. About Odos Cross-Chain Contracts 7
2.2. Methodology 7
2.3. Scope 9
2.4. Project Overview 9
2.5. Project Timeline 10
3. Detailed Findings 10
31. Inconsistent handling of native token 1
3.2. Lack of validation of outputToken address 13
4. Discussion 14
41. Testsuite 15
5. System Design 15
51, AcrossHook 16

Zellic © 2025 < Back to Contents Page 2 of 19

2 .
4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

5.2. AcrossHandler 17
5.3. Important design aspects for users 17
6. Assessment Results 18
6.1. Disclaimer 19

Zellic © 2025 < Back to Contents Page 3 of 19

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

About Zellic

Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, and more.

Prior to Zellic, we founded the #1CTF (competitive hacking) team 2 worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

For more on Zellic's ongoing security research initiatives, check out our website zellic.io » and follow
@zellic_io »on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io 2.

1Z
N
)

Zellic © 2025

< Back to Contents Page 4 of 19

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

1.

Overview

11. Executive Summary

Zellic conducted a security assessment for Odos from June 17th to June 18th, 2025. During this
engagement, Zellic reviewed Odos cross-chain contracts' code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

» Does the protocol behave as expected?

« Is it possible for a malicious actor to exploit the bridging and swap logic to gain
unauthorized access to funds?

» Could user funds become permanently locked?

1.3. Non-goals and Limitations

We did not assess the following areas that were outside the scope of this engagement:

» Front-end components
« Infrastructure relating to the project
» Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Odos cross-chain contracts, we discovered two findings. No
critical issues were found. One finding was of high impact and one was of medium impact.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of Odos
in the Discussion section (4. 7).

Zellic © 2025

< Back to Contents Page 5 0f 19

2. .
4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

Breakdown of Finding Impacts

Impact Level Count
M Critical 0
B High 1
' Medium 1
B Low 0
B Informational 0

Zellic © 2025 < Back to Contents Page 6 of 19

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

2. Introduction

2.1. About Odos Cross-Chain Contracts

Odos contributed the following description of Odos cross-chain contracts:

This project provides a suite of smart contracts designed to facilitate seamless interaction
between Odos and the Across Protocol. It enables cross-chain asset transfers and message
passing by handling the necessary hook logic for initiating bridge transfers and handler logic
for processing messages received from Across on a destination chain.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
both automated testing and manual review. These processes can vary significantly per engagement,
but the majority of the time is spent on a thorough manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, we may also employ sophisticated analyzers such as model
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time permitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding's impact. Instead, we assign it on a case-by-case

Zellic © 2025

< Back to Contents Page 7 of 19

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that the mostimportant findings come first in the document, rather
than being strictly ordered on impact alone. Thus, we may sometimes emphasize an "Informational"
finding higher than a"Low" finding. The key distinction is thatalthough certain findings may have the
same impact rating, their importance may differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4.) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025

< Back to Contents Page 8 of 19

2 .
4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

2.3. Scope

The engagement involved a review of the following targets:

Odos Cross-Chain Contracts

Type Solidity

Platform EVM-compatible

Target odos-cross-chain-contracts

Repository https://github.com/odos-xyz/odos-cross-chain-contracts »
Version 399776e92a7213882ce10346d1ac8143814d4736
Programs Across.sol

AcrossBase.sol
AcrossHandler.sol
AcrossHook.sol

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of three person-days. The assess-
ment was conducted by two consultants over the course of two calendar days.

Zellic © 2025 < Back to Contents Page 9 of 19

https://github.com/odos-xyz/odos-cross-chain-contracts

2 .
4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

Contact Information

The following project managers were associ- The following consultants were engaged to
ated with the engagement: conduct the assessment:
Jacob Goreski Katerina Belotskaia
¥+ Engagement Manager ¥+ Engineer
jacob@zellic.io 7 kate@zellic.io #
Chad McDonald Sunwoo Hwang
¥+ Engagement Manager ¥+ Engineer
chad@zellic.io # sunwoo@zellic.io #

2.5. Project Timeline
The key dates of the engagement are detailed below.
June 17,2025 Start of primary review period

June 18,2025 End of primary review period

Zellic © 2025 < Back to Contents Page 10 of 19

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:kate@zellic.io
mailto:sunwoo@zellic.io

£
N
\4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

3. Detailed Findings 3.1. Inconsistent handling of native token
Target AcrossHook.sol
Category Coding Mistakes Severity High
Likelihood High Impact High
Description

The OdosRouter and AcrossHook contracts use the zero address to represent the native token
when interacting with the SpokePool contract. When the input token is the zero address, these
contracts call the SpokePool's deposit function with value in Ether.

function _executeSpokePoolCall(address inputToken, uint256 amount,
bytes memory callData) internal {
if (inputToken != address(0)) {
IERC20(inputToken).safeIncreaseAllowance(spokePool, amount);

(bool success, bytes memory returnData) = spokePool.call{value: inputToken
== address(0) ? amount : O}(callData);
/1 [...1]

However, the SpokePool contract expects the WETH address for native token operations. The
deposit function uses msg.value to convert Ether to WETH only when the input token matches the
WETH address; otherwise, it requires msg. value to be 0. Consequently, transactions using the zero
address as the input token will be reverted.

if (params.inputToken == address(wrappedNativeToken).toBytes32() && msg.value
> 0) {
if (msg.value != params.inputAmount)

revert MsgValueDoesNotMatchInputAmount();
wrappedNativeToken.deposit{ value: msg.value }();
// Else, it is a normal ERC20. In this case pull the token from the caller
as per normal.
// Note: this includes the case where the L2 caller has WETH (already
wrapped ETH) and wants to bridge them.
// In this case the msg.value will be set to O, indicating a "normal" ERC20
bridging action.
} else {
// msg.value should be 0 if input token isn't the wrapped native token.
if (msg.value != 0) revert MsgValueDoesNotMatchInputAmount();

Zellic © 2025 < Back to Contents Page 11 0f19

2 .
4W Zel I IC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

Impact

All transactions using the zero address as the input token will fail due to the incompatible
native-token handling between the AcrossHook and SpokePool contracts. This misalignment
violates the core design requirement that token addresses should not be zero, as specified in the
AcrossHandler's invariants.

Recommendations

Replace the zero address with the WETH address when interacting with the SpokePool contract to
maintain consistency with the SpokePool's native-token-handling mechanism.

Remediation

This issue has been acknowledged by Odos, and a fix was implemented in 2.

Zellic © 2025 < Back to Contents Page 12 of 19

https://github.com/odos-xyz/odos-cross-chain-contracts/pull/3

£
NN
\4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

3.2. Lack of validation of outputToken address

Target AcrossHook.sol

Category Business Logic Severity Medium

Likelihood Medium Impact Medium
Description

In the executeOdosHook function of the AcrossHook contract, there is a lack of validation to ensure
that the outputToken specified by the user in hookData is not the zero address. Since the zero
address is used in OdosRouterV3 to represent native tokens, users may assume thatit is a valid
and supported value. However, on the destination chain, the handleV3AcrossMessage function,
which processes the bridged message and tokens received from the SpokePool contract, will
revert if tokenSent (equivalent to the outputToken from the sending side) is the zero address.

function handleV3AcrossMessage(address tokenSent, uint256 amount, address,
bytes memory message)

external
virtual
onlySpokePool

{
require(tokenSent != address(0), "AcrossHandler: tokenSent cannot be the
zero address");
[...]

}

Impact

If the user specifies the zero address to indicate native-token usage, the swap process on the
destination chain will fail, and the bridging and swap will not be completed.

Recommendations

We recommend adding a validation check in the executeOdosHook function to ensure that
outputToken is not the zero address.

Zellic © 2025 < Back to Contents Page 13 of 19

2 .
4W Zel I IC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

Remediation

This issue has been acknowledged by Odos, and a fix was implemented in 2.

Zellic © 2025 < Back to Contents Page 14 of 19

https://github.com/odos-xyz/odos-cross-chain-contracts/pull/3

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

4. Discussion

The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

41. Testsuite

While the test suite covers the core contract logic, it lacks integration tests that validate correct
interaction with the actual SpokePool contract.

This makes it harder to ensure that the contract behaves as expected, especially in scenarios that
involve specific token handling or execution flows used by the real SpokePool.

For example, SpokePool expects the address of the wrapped native token to be provided when
native tokens are used, then the OdosRouter and AcrossHook contracts use the zero address. As a
result, native token handling logic behaves incorrectly in a real environment. See Finding 3.1. » for
more detail.

Consider extending the test suite to include integration tests with the actual SpokePool contract to
ensure correct behavior when interacting with the real protocol implementation.

Zellic © 2025

< Back to Contents Page 15 of 19

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

5. System Design

This provides a description of the high-level components of the system and how they interact,
including details like a function’s externally controllable inputs and how an attacker could leverage
each input to cause harm or which invariants or constraints of the system are critical and must
always be upheld.

Not all components in the audit scope may have been modeled. The absence of acomponentin
this section does not necessarily suggest that it is safe.

51. AcrossHook

The AcrossHook contract is responsible for handling hook functionality after swaps in the
OdosRouter contract. It implements the executeOdosHook function, which can only be called by
the OdosRouter contract. This function accepts hookData bytes, which are provided by the initiator
of the swap action in the OdosRouter contract.

The hookData, which is fully controlled by the user, includes the following information:

struct AcrossDepositWithFee {
address depositor;
address recipient;
address inputToken;
address outputToken;
uint256 inputAmount;
uint256 outputAmount;
uint256 destinationChainlId;
address exclusiveRelayer;
uint32 quoteTimestamp;
uint32 fillDeadline;
uint32 exclusivityParameter;
bytes message;
uint256 feePercentage;
address feeRecipient;

During executeOdosHook execution, it sends fees to the feeRecipient specified by the user and
then calls the deposit function in the SpokePool contract using tokens received from the
OdosRouter contract to initiate the cross-chain bridging of both the message and funds.

The outputToken address and outputAmount that the recipient will receive on the destination
chain are also taken from hookData. While executeOdosHook does not validate these parameters, it
does scale the outputAmount based on the actual input amount after fees and the inputAmount
provided by the user. Additionally, the executeOdosHook function facilitates cross-chain swaps; the
deposited amount can be used for a swap on the destination chain. However, this only occurs if the
specified recipient on the destination chain is a smart contract, specifically, the AcrossHandler. If
the recipient is an externally owned account, then the output tokens will simply be sent directly to
the recipient, without any further logic execution.

Zellic © 2025

< Back to Contents Page 16 of 19

2 .
4W ZeIIIC Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

Invariants

» The caller must be the OdosRouter contract.

» The fee percentage must be less than 10,000.

« The fee-recipient address cannot be the zero address.
» The token amount must be greater than zero.

5.2. AcrossHandler

The AcrossHandler contract is responsible for handling messages from the Across SpokePool. It
implements the hand1leV3AcrossMessage function, which can only be called by the Across
SpokePool contract. Before the function call, the SpokePool sends tokens, and then AcrossHandler
calls the swap function in the OdosRouter contract using the provided tokens and message data.

Invariants

» The caller must be the Across SpokePool contract.
» The token address cannot be the zero address.
* The token amount must be greater than zero.

5.3. Important design aspects for users

The points outlined below are intended to highlight key aspects of the protocol’s design that may
affect user experience. These are not security vulnerabilities, but they are important for
understanding how the protocol behaves in certain situations and where user awareness is critical
for successful interaction.

Misconfigured hookData leads to unprocessed bridging or failed swap after
bridging

The Across contract relies on the user to configure the hookData correctly. The executeOdosHook
function on the sending side performs minimal validation, so the user can provide arbitrary or
incorrect data — for example, an unsupported chain ID or an unreasonable outputAmount, and the
function execution will not revert.

However, in particular, due to the SpokePool design, if unreasonable output amount is provided,
relayers may never bridge the user’s funds and message, leaving them unprocessed on the source
chain. Or, if invalid output token or mismatched amounts of tokens were specified, the swap on the
destination chain will fail. So it is the user’s responsibility to ensure that the hookData is valid and
correctly structured to avoid failed swaps or unprocessed bridging.

Zellic © 2025 < Back to Contents Page 17 of 19

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

Available funds can be used by other users

Funds bridged to the destination chain but not claimed due to misconfigured swap data remain on
the AcrossHandler contract. These funds are not locked or isolated and may be used by other
users in subsequent swap executions. This behavior is part of the current design and should be
clearly communicated to users.

Only wrapped native tokens are transferred to the recipient when it is a smart
contract

When performing cross-chain swaps involving native tokens, the SpokePool contract on the
destination chain only provides the wrapped version of the native token to the recipient, when it
is a smart contract. As a result, the recipient is responsible for manually unwrapping the token if
they need native assets after bridging.

Dummy data in the deposit function

When calling the deposit function in the SpokePool contract, the AcrossHook contract appends
the dummy data 0x1dc0de0080 to the calldata. While this data does not affect the function's
execution, it could confuse users. In response, Odos clarified that

hex"1dc0de0080" is an integratorId that across requested us to append to the end of the
calldata to track our txs.

bytes memory callData = abi.encodeWithSelector(
SPOKEPOOL_DEPOSIT_SELECTOR,
params.depositor,
params.recipient,

D3
@> return bytes.concat(callData, hex"1dc0de0080");

Zellic © 2025

< Back to Contents Page 18 of 19

Odos Cross-Chain Contracts Smart Contract Security Assessment June 23,2025

6. Assessment Results

During our assessment on the scoped Odos cross-chain contracts, we discovered two findings.
No critical issues were found. One finding was of high impact and one was of medium impact.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, and we encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025

< Back to Contents Page 19 of 19

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Odos Cross-Chain Contracts
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Inconsistent handling of native token
	Lack of validation of outputToken address

	Discussion
	Test suite

	System Design
	AcrossHook
	AcrossHandler
	Important design aspects for users

	Assessment Results
	Disclaimer

